Effects of Hydrolysis on Force Generation by Actin Filaments
نویسنده
چکیده
The effects of ATP hydrolysis on actin polymerization-based force generation are calculated using a multistate two-state Brownian-ratchet model based on measured polymerization curves. For ensembles of filaments pushing against a rigid obstacle, the stall force per filament can be much less than the equilibrium ATP-actin stall force. PACS numbers: 87.15.Rn,87.17.Jj,87.16.Ac,87.15.Cc
منابع مشابه
Modeling the evolution of cells outgrowth due to the force exerted by actins
Motility and membrane deformation are crucial to motile cells. Therefore formation of protrusion in the membrane has been the subject of various studies. The stable shape of the membrane and also its movements are controlled by the forces exerted by actin filaments. In order to study the protrusion behavior, we represented a toy model based on actin filaments polar characteristic and elastic ch...
متن کاملMathematical and Physical Modeling of Actin Dynamics in Motile Cells
Mathematical modeling has been very instrumental in aiding traditional experimental methods in uncovering the mysteries of actin dynamics. Here we review recent quantitative models of actin dynamics focusing on ATP hydrolysis effects, force generation by single actin filaments and networks, self-organization and dynamics of actin networks, dynamics of lamellipodia, filopodia and lamella, and in...
متن کاملHydrogen evolution from catalytic hydrolysis of NaBH4: Comparative study between the catalytic activity of TiO2 nanotubes with various arrangements
Nowadays, a lot of efforts have been applied to find an appropriate catalyst for generating hydrogen from NaBH4. Hence in the current study, various nanostructures of TiO2 were employed to obtain an insight into how the different support catalysts effect on the hydrolysis rate of NaBH4. For this aim, disordered filaments (DF-NTs) and ordered free-standing TiO2 nanotubes (FS-NTs) were fabricated...
متن کاملClamped-filament elongation model for actin-based motors.
Although actin-based motility drives cell crawling and intracellular locomotion of organelles and certain pathogens, the underlying mechanism of force generation remains a mystery. Recent experiments demonstrated that Listeria exhibit episodes of 5.4-nm stepwise motion corresponding to the periodicity of the actin filament subunits, and extremely small positional fluctuations during the intermi...
متن کاملCollective force generated by multiple biofilaments can exceed the sum of forces due to individual ones
Collective dynamics and force generation by cytoskeletal filaments are crucial in many cellular processes. Investigating growth dynamics of a bundle of N independent cytoskeletal filaments pushing against a wall, we show that chemical switching (ATP/GTP hydrolysis) leads to a collective phenomenon that is currently unknown. Obtaining force-velocity relations for different models that capture ch...
متن کامل